

Fundamentale **Fragen** zur **Planung/Ertüchtigung** von **Rechenzentren** ...

- Welche Verfügbarkeit hat ein konkretes Design?
- Wie viele Single Points of Failure sind systeminhärent?
- Spielt die Anzahl der Double Points of Failure eine Rolle?
- Welchen Einfluss hat die Alterung der Systeme?
- Wie performen alternative Varianten im direkten Vergleich?
- Sind die Kennzahlen vorgefertigter Lösungen besser?
- Ist die Infrastruktur während der Baumaßnahme verlässlich?
- Welchen Unterschied generieren Mehrinvestitionen?
- Wo steht ein Design hinsichtlich Richtlinien und Normen?

... Antworten durch Verlässlichkeitsanalyse mit InfraOpt®.

1.1 Richtlinien und Normen Tier Klassifikation - Uptime Institute

Uptime Institute	Tier I	Tier II	Tier III	Tier IV
Single Points-of Failure	Many+ Human Error	Many+ Human Error	Some+ Human Error	Fire, EPO+Some Human Error
Representative Plan- ned Maintenance Shut Downs	2 Annual Events at 12 Hours Each	2 Events Over 2 Years at 12 Hours Each	None Required	None Required
Representative Site Failures	6 failures Over 5 Years	1 Failure Every Year	1 Failure Every 2.5 Years	1 Failure Every 5 Years
Annual Site-Caused End-User Downtime (based on field data)	28.8 hours	22.0 hours	1.6 hours	0.8 hours (0.4 hours)
Resulting End-User Availability on Site- Caused Downtime	99.67 %	99.75 %	99.98 %	99.99 % (99.995 %)
First Deployed	1965	1970	1985	1995

Quelle (Auszug): Uptime Institute, 2008, White Paper, "Tier Classifications Define Site Infrastructure Performance", Page 14

1.2 Richtlinien und Normen BSI Verfügbarkeitsklassen, BITKOM Kategorien

BSI	Vk	(0	VK 1		VK 2	VK 3	VK 4	4	VK 5
Ausfallzeit /Jahr	ca	ı. 2-3 Wo.	< 90 S	td.	< 9 Std.	< 1 Std.	ca.	ō min.	-
Anforderung an Verfügbarkeit	Ke	ine	norma	al	hoch	sehr hoch	höcl	nste	Desaster -tolerant
Verfügbarkeit	ca	ı. 95 %	> 98,9	7 %	> 99,90 %	> 99,99 %	> 99	,999 %	(100 %)
BITKOM		Kategorie	A	Kate	egorie B	Kategorie	С	Kateg	orie D
Zul. Ausfallzeit /Ja	hr	12 h		1 h		10 min.		< 1 mir	1
Verteilung	Verteilung USV/Norn empfohle				undanz Id B	Redundanz A und B		Redundanz A und B	
USV		mind. 10 m	nin	mind. 10 min N+1		mind. 10 m 2 N	in	mind. 7 2 (N+1)	
Notstrom	tstrom optional			Anlauf 15 s 24 h Brennstoff		Anlauf 15 s 72 h Brennstoff		Anlauf 15 s 72 h Betankung	
Klimatisierung	atisierung Redundanz opt. bzw. notwendig			Redundanz notwendig		Redundanz notwendig		Komplette Redundanz	
→ Verfügbarkeit 99,86 %			99,99 %		99,998 %		99,9998 %		
Quelle (Auszug): BITKOM e. V., Betriebssicheres RZ, Leitfaden 2013									

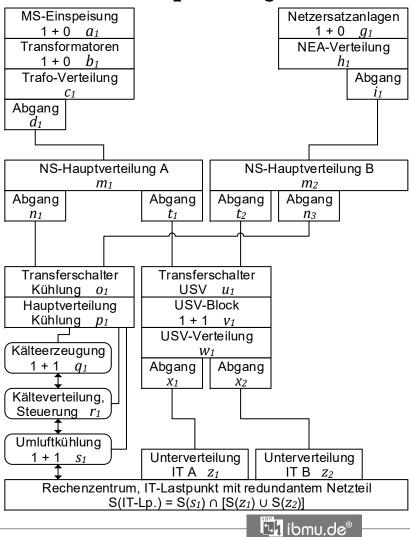
1.3 Richtlinien und Normen DIN EN 50600 ff.

Verfügbarkeits- Klasse	VK 1	VK 2	VK 3	VK 4	VK 4 erweitert
Verfügbarkeit	niedrig	mittel	hoch	sehr hoch	
DIN EN 50600-2-2 Stromversorgung	keine Redundanz	Komponenten Redundanz	Instandsetzung im Ifd. Betrieb	Fehlertoleranz	
Versorgung	Einzelpfad	Einzelpfad	Mehrpfad	Mehrpfad	
Redundanz	N	N+1	N+1 bzw. 2N	2N	
Transferschalter	k. A.	(Ja)	Ja	Ja, mehrere	
Bei Ausfall der Stromversorgung	USV, kontroll. Abschalten	USV, kontroll. Abschalten	USV, alternative Versorgung	USV, alternative Versorgung	
DIN EN 50600-2-3 Regelung d. Umge-	-	keine Aus- fallsicherheit	Komponenten Redundanz	Instandsetzung im Iaufenden Betrieb	
bungsbedingungen				weitgehend	vollständig
Versorgung	-	Einzelpfad	Einzelpfad	Mehrpfad passiv	Mehrpfad aktiv
Redundanz		N	N+1	N+1	2N

Quelle (Auszug): DIN EN 50600-1 2013, DIN EN 50600-2-2 2014, DIN EN 50600-2-3 2015

2.1 Variantenvergleich von Redundanzkonzepten

Aufgabenstellung und Variante 1

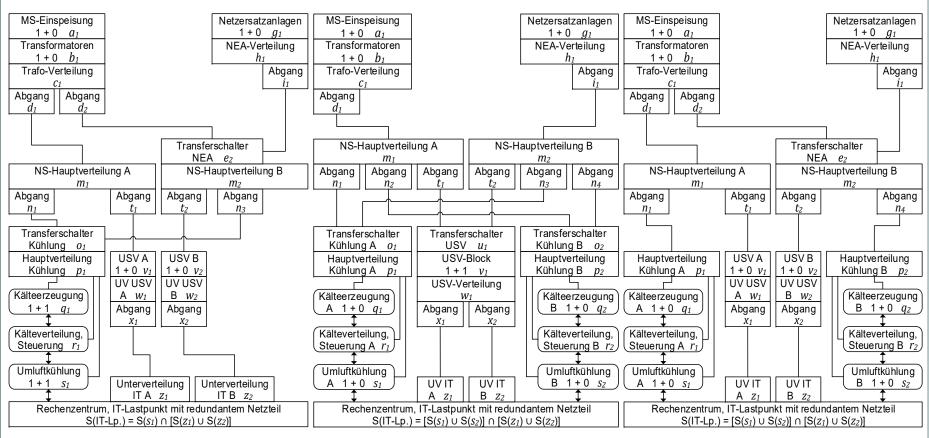

Vergleiche vier Varianten bezüglich EN 50600 ff:

- 1) $N_F + 1 & N_C + 1$ VK 2
- 2) $2N_F$ & N_C+1 VK 3
- 3) N_F+1 & $2N_C$ VK 3
- 4) $2N_F$ & $2N_C$ VK 4 erweitert

mittels Verlässlichkeitsanalyse:

- Zuverlässigkeit R(t=1 Jahr)
- Inhärente Verfügbarkeit A_i
- Operationale Verfügbarkeit A_o
- 1-Fehlertoleranz SPoF
- 2-Fehlertoleranz DPoF

Variante 1: N_F+1 & N_C+1



2.2 Variantenvergleich von Redundanzkonzepten

Varianten 2 bis 4

Variante 2: $2N_E \& N_C + 1$ Variante 3: $N_E + 1 \& 2N_C$ Variante 4: $2N_E \& 2N_C$

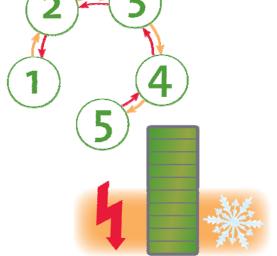
Identische Komponentendaten für Varianten 1 bis 4 Datenquelle: IEEE Std. 493-2007, Annex Q

2.3 Variantenvergleich von Redundanzkonzepten Zuverlässigkeit und Verfügbarkeit

- Zuverlässigkeit (Reliability): R(t) = e-1/MTBF * t
 - Wahrscheinlichkeitsmaß, abhängig vom Komponentenalter
 - Strukturdesign (Tier, Kategorie), Redundanzen (x*N, y*M)
 - Komponenten (MTBF), Betriebsdauer etc.
- Wann und in welche Teilsysteme ist zu investieren (Alterung)
- Inhärente Verfügbarkeit: A_i = MTBF / (MTBF + MTTR)
 - MTBF: Mittlere Zeit zwischen zwei Fehlern
 - MTTR: Mittlere Zeit zur Reparatur
- Welche Servicelevel sind notwendig, was ist zu bevorraten
- Operationale Verfügbarkeit: A_o = MTBM / (MTBM + MDT)
 - MTBM: Mittlere Zeit zwischen zwei Instandsetzungen
 - MDT: Mittlere Zeit der Nichtverfügbarkeit
- **Funktionieren** die **Managementsysteme** (Qualifikation, Sicherheit)

2.4 **Variantenvergleich** von Redundanzkonzepten 1- und 2-Fehlertolereranz

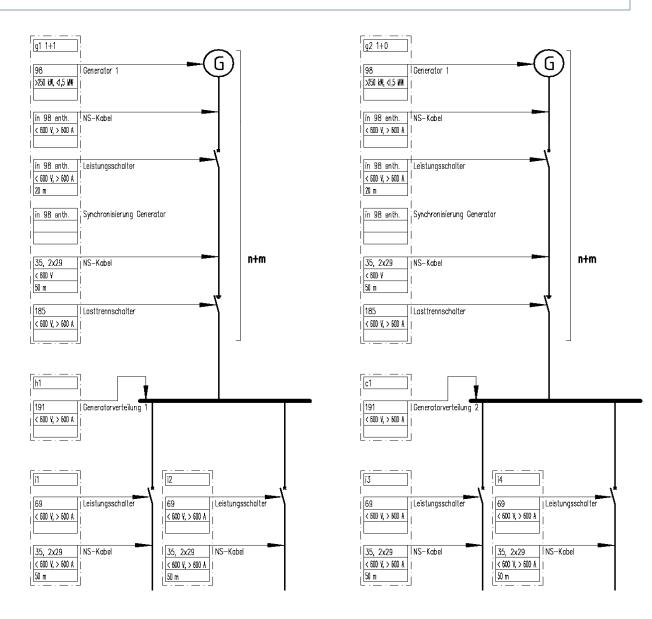
- Single Point of Failure (SPoF)
 - Ein Fehlerereignis führt zum Ausfall des Gesamtsystems
 - Anzahl der Versorgungspfade Infrastrukturdesign
- Welche Verfügbarkeitsklasse nach EN 50600-1 ist zu realisieren
- Double Points of Failure (DPoF)
 - Zwei gleichzeitig auftretende Fehlerereignisse führen zum Gesamtausfall
 - Ein Fehlerereignis tritt auf und das notwendige Folgeereignis schlägt fehl
 - Bestimmung des "herabgesetzten Ausfallsicherungsgrades" in Schaltbzw. Wartungssituationen nach EN 50600-2-2
- Welche inhärenten Redundanzen sind notwendig?
- An welchen Stellen sind Transferschalter einzusetzen?

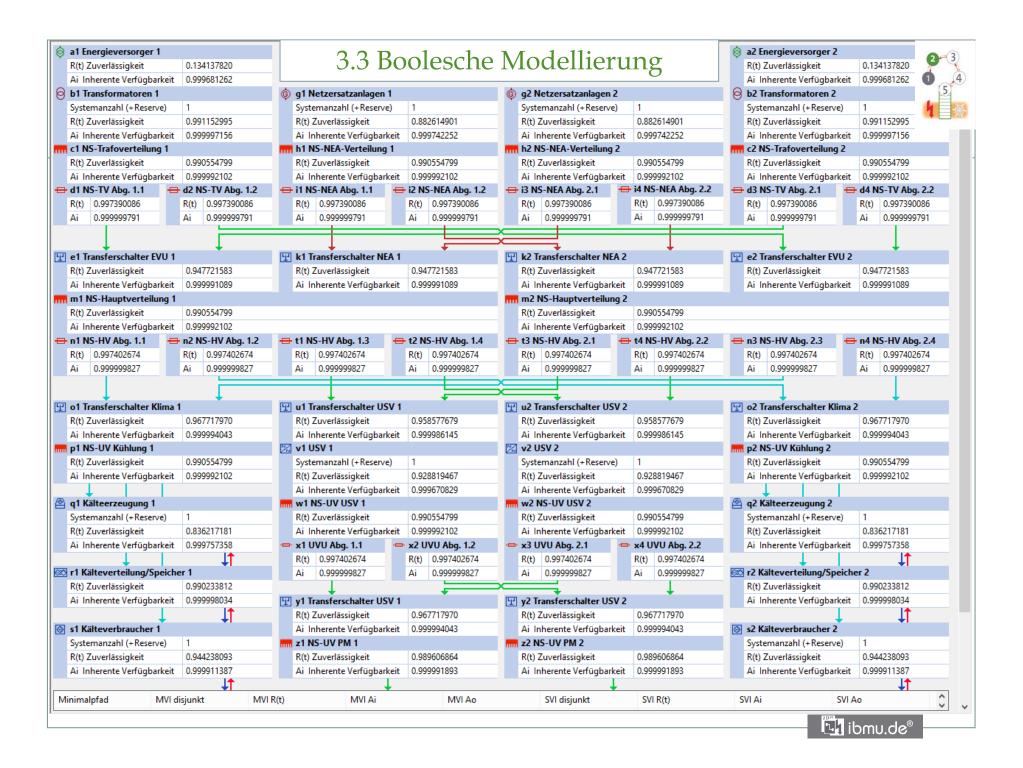

3.1 Verlässlichkeitsanalyse mittels InfraOpt® Praxisbewährter **Dienstleistungsprozess** in **fünf Schritten**

- 1. Überführung d. Infrastruktur ein integrales Verlässlichkeitsschema Bestand: ca. 15 MT, Neuplanung: ca. 7 MT
- Modellierung der Infrastruktur in InfraOpt®
 ca. 7 MT
- Aufbereitung der Zuverlässigkeitsdaten ca. 7 MT
- Zuverlässigkeits-, Verfügbarkeitsberechnung,
 1- und 2-Fehlersimulation, Auswertung
 ca. 7 MT
- 5. Numerische Optimierung

ca. 2 ... 10 MT

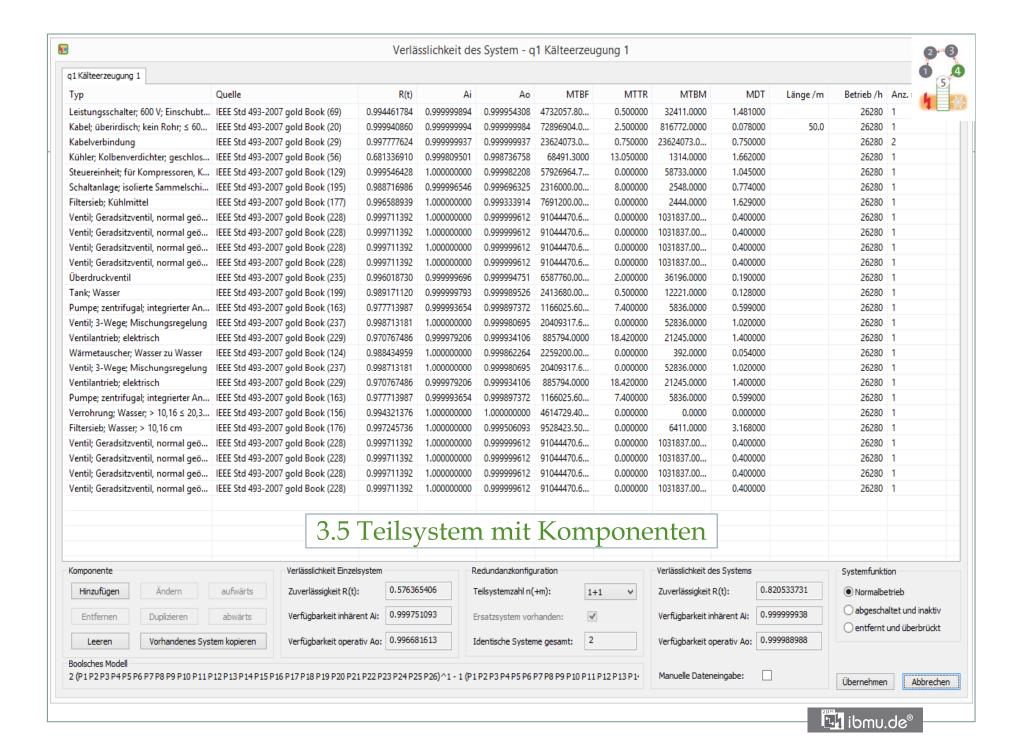
Ziel der Optimierung:


Maximierung Verlässlichkeit Minimierung Lebenszykluskosten



EW 1 Bsp. 3.3.3 > 5 kV, < 600 A 46, 2x29 | MS-Kabel > 5 kV, < BOD A 500 m 193, 79 MS-Schaltanlage > 5 kY, < BOD A b1 n=1 MS-Trafoschalter > 5 kV, < BOD A 46, 2x29 MS-Kabel > 5 kV, < 600 A 50 m 204 Trafo 1 < 3 MVA 35, 2x29 < 600 Y 20 m n+m 69 | Leistungsschalter < 600 Y, > 600 A | Trafoverteilung 1 < 600 Y, > 600 A Leistungsschalter Leistungsschalter < 600 Y, > 600 A < 600 Y, > 600 A 35, 2x29 NS-Kabel 35, 2x29 NS-Kabel < 600 Y, > 600 A < 600 V, > 600 A 50 m 50 m

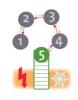
3.2 Integrales Verlässlichkeitsschema Elektroenergie- und Kälteversorgung



3.4 Aufbereitung der Komponentendaten Datenquellen

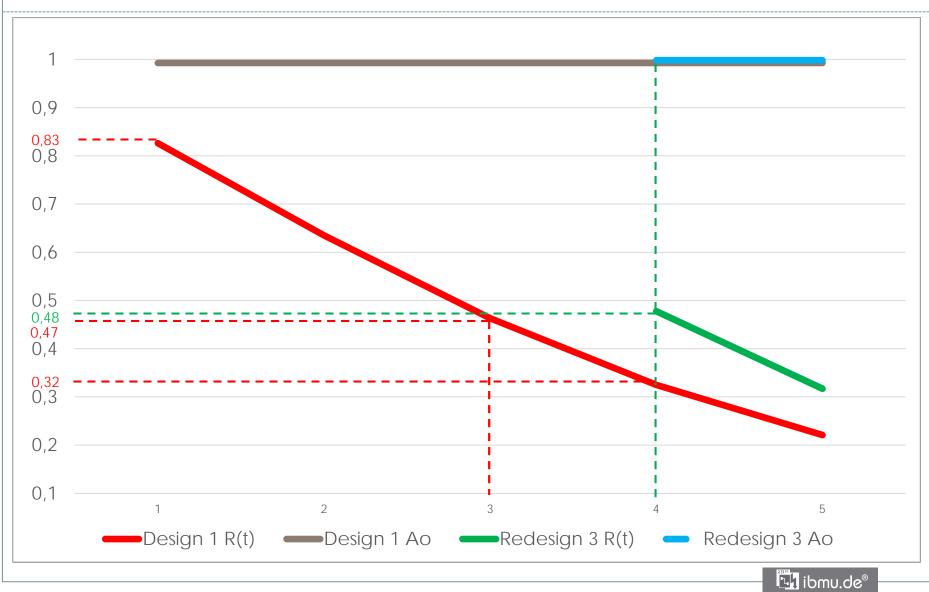
- Aufbereiten der Teilsysteme des Modells in InfraOpt®
 - Ein Teilsystem kann beliebig viele Komponenten enthalten
 - Je Komponente kann das Alter festgelegt werden
 - Redundante Komponenten sind möglich
 - Komponentenattribute werden unterstützt (z. B. Kabellänge)
 - Beliebig redundante Teilsysteme sind möglich
- Verwendung von Zuverlässigkeitsdaten aus folgenden Quellen
 - Statistische Erhebungen des Rechenzentrums-Betreibers
 - Reaktionszeiten bzw. Statistiken von Lieferanten oder Dienstleistern
 - Zuverlässigkeitsdaten von Herstellern
 - Zuverlässigkeitsdaten aus IEEE Std. 493-2007

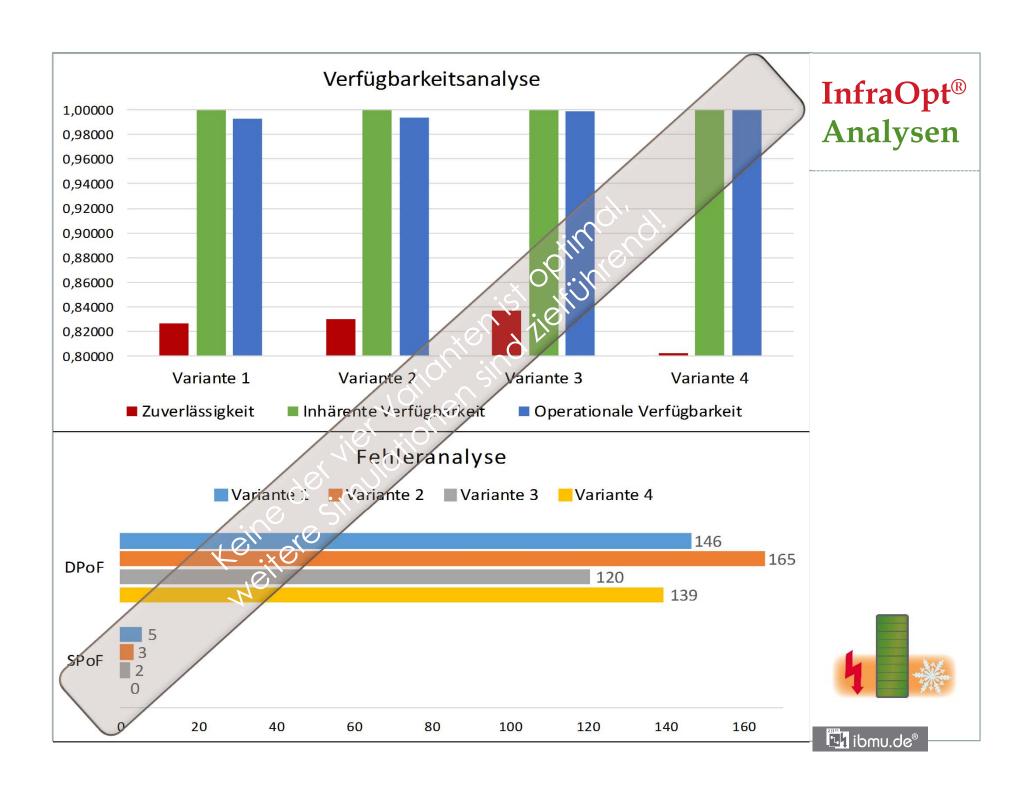
3.6 Variantenvergleich mittels InfraOpt®


Ergebnisse der Verlässlichkeitsanalyse

Variante	1: N _E +1 & N _C +1	2: 2N _E & N _C +1	3: N _E +1 & 2N _C	4: 2N _E & 2N _C	
N	25	28	32	31	
R (t=1a)	0,82629	0,83016	0,83733	0,80050	
A_{i}	0,99996	0,99998	0,99998	0,99999	
A_{o}	0,99261	0,99392	0,99854	0,99982	
SPoF	5 von 25	3 von 28	2 von 32	0 von 31	
DPoF	146 von 300	165 von 378	120 von 496	139 von 465	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	MS-Einspeisung $1+0$ a_1 a_1 a_2 a_3 a_4 a_4 a_4 a_5 a	

3.7 Variantenvergleich mittels InfraOpt®


Kategorien und Verfügbarkeitsklassen



Variante	1	2	3	4	
Einteilung A _o	99,261 %	99,392 %	99,854 %	99,982 %	
Upt. Institute	< Tier 1	< Tier 1	Tier 2	Tier 3	
BITKOM	< Kategorie A	< Kategorie A	~ Kategorie A	~ Kategorie B	
BSI	VK 1	VK 1	~ VK 2	~ VK 3	
Redundanz	N _E +1 & N _C +1	2N _E & N _C +1	N _E +1 & 2N _C	$2N_E \& 2N_C$	
Upt. Institute	Tier 2	Tier 3	Tier 2	Tier 4	
BITKOM	Kategorie B	Kategorie C	Kategorie B	Kategorie D	
EN 50600-2-x	VK 2	VK 3	VK 3	VK 4 erweitert	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mestargatzanlagram Netzergatzanlagram Netzerg	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

3.8 Zuverlässigkeit und Operationale Verfügbarkeit Design 1: R(1...5 Jahre) Design 3: R(4...5 Jahre)

4 Verlässlichkeitsanalyse im Normen-Kontext Zusammenfassung

Die Methodik zur **RZ-Infrastruktur-Optimierung** auf Grundlage der Metriken: **Zuverlässigkeit**, **Verfügbarkeit**, **1-** und **2-Fehlertoleranz**

- Analytischer Vergleich von Infrastruktur-Designs verschiedener Verfügbarkeitsklassen EN 50600-1 bezüglich EN 50600-2-2/-3
- Bestimmung des "herabgesetzten Ausfallsicherungsgrades" in Schalt- bzw.
 Wartungssituationen EN 50600-2-2
- **Unterstützung** beim Infrastruktur-Design bzw. -Redesign:
 - Investitionsbegründung durch Variantenvergleich
 - Identifizieren von Schwachstellen (strukturell, Komponenten)
 - Vergleich von Komponenten mit unterschiedlichen MTBF bzw. MTTR
 - Validierung von Service-Level-Agreements
 - Abgleich von Wartungs- und Serviceplänen
- Fortlaufende Zuverlässigkeitsbewertung im Rahmen eines Informationssicherheits-Managementsystems nach DIN ISO 27001

InfraOpt® Forschungs- und Entwicklung

- August 2009 Dezember 2011: FuE-Vorhaben InfraOpt®
 - FuE-Vorhaben für KMU, Investitionsbank des Landes Brandenburg
 - Externe Partner: Technische Universität Berlin, Prof. Strunz; Universität Potsdam, Prof. Schaub; Associate Prof. C. M. Welzig (USA)
 - Ergebnis: Dienstleistungsprozess basierend auf Simulationssoftware InfraOpt64
- Wissenschaftliche Veröffentlichungen
 - 2012 IEEE PES ISG, "Integrated Reliability Modeling for Data Center Infrastructures: A Case Study"
 - **2**015 ...
- Juni 2014 Mai 2016: FuE-Vorhaben InfraOpt® REALTIME
 - FuE-Vorhaben für KMU, Investitionsbank des Landes Brandenburg
 - Externe Partner: Technische Universität Berlin, Prof. Strunz; Associate Prof. C. M. Welzig (USA)

